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Abstract. A surprising result of FitzGerald and Horn (1977) shows that A◦α := (aα
ij) is

positive semidefinite (p.s.d.) for every entrywise nonnegative n× n p.s.d. matrix A =

(aij) if and only if α is a positive integer or α ≥ n− 2. Given a graph G, we consider the
refined problem of characterizing the setHG of entrywise powers preserving positivity
for matrices with a zero pattern encoded by G. Using algebraic and combinatorial
methods, we study how the geometry of G influences the set HG. Our treatment
provides new and exciting connections between combinatorics and analysis, and leads
us to introduce and compute a new graph invariant called the critical exponent.

Résumé. Un résultat surprenant de FitzGerald et Horn (1977) démontre que A◦α :=
(aα

ij) est semi-définie positive pour chaque matrice semi-définie positive de dimension
n avec des entrées non-négatives si et seulement si α est un entier positif ou α ≥ n− 2.
Pour un graph G donné, nous considérons une généralization naturelle du problème
en étudiant l’ensemble HG de puissances préservant la positivité des matrices ayant
une structure de zéros encodée par G. À l’aide de méthodes algébriques et combina-
toires, nous analysons de quelle façon la géometrie du graph G détermine l’ensemble
HG. Notre travail fournit de nouvelles connexions excitantes entre la combinatoire
et l’analyse, et nous mène à définir et calculer un nouvel invariant que l’on nomme
l’exposant critique d’un graph.

Keywords: Matrices with structure of zeros, chordal graphs, entrywise positive maps,
positive semidefiniteness, Loewner ordering, fractional Schur powers

1 Introduction and main results

Let N denote the set of positive integers. Given n ∈ N and I ⊂ R, let Pn(I) denote
the set of symmetric positive semidefinite n × n matrices with entries in I. Given two
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n× n matrices A = (aij) and B = (bij), their Hadamard (or Schur, or entrywise) product,
denoted by A ◦ B, is defined by A ◦ B := (aijbij). Note that A ◦ B is a principal submatrix
of the tensor product A ⊗ B. As a consequence, if A and B are positive semidefinite,
then so is A ◦ B. This result is known in the literature as the Schur product theorem.

Given α ∈ R, we denote the entrywise αth power of a matrix A with nonnegative
entries by A◦α := (aα

ij), where we define 0α := 0 for all α. By the Schur product theorem,

A◦k is positive (semi)definite for all positive (semi)definite matrices A and all k ∈ N. It
is natural to ask if other real powers have the same property. This problem was resolved
by FitzGerald and Horn, who revealed a surprising phase transition phenomenon.

Theorem 1.1 (FitzGerald–Horn [11]). Let n ≥ 2.

1) If α ∈N or α ≥ n− 2, then A◦α ∈ Pn(R) for all A ∈ Pn([0, ∞)).

2) If α ∈ (0, n− 2) \N, then there exists a matrix A ∈ Pn([0, ∞)) such that A◦α 6∈ Pn(R).

We now refine the above problem by restricting the set of matrices to those with a
given sparsity structure. Given a finite undirected simple graph G = (V, E) with nodes
V = {1, 2, . . . , n}, and a subset I ⊂ R, define

PG(I) := {A ∈ Pn(I) : aij = 0 ∀(i, j) 6∈ E, i 6= j}. (1.1)

We denote PG(R) by PG. All graphs below are assumed to be finite and simple.
∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


Figure 1.1: PG for G a 4-cycle. Entries with an asterisk are not constrained.

The goal of this paper is to study the set of entrywise powers preserving positivity on
the set PG. Such structured matrices arise naturally in various subfields of mathematics,
including combinatorial matrix analysis [1, 8], spectral graph theory [10], and graphical
models [21]. As we explain below, such matrices and their entrywise transforms are also
of importance in modern-day applications in high-dimensional covariance estimation,
making the problem at once classically motivated as well as timely.

We now establish further notation. Note that when α 6∈ N, and A is a real matrix,
A◦α is not always well-defined. Thus, we follow Hiai [20] and work with the odd and
even extensions to R of the power functions. Define

ψα(x) := sgn(x)|x|α, φα(x) := |x|α, ∀ x ∈ R \ {0}, (1.2)

and ψα(0) = φα(0) := 0. Given f : R → R, and A = (aij), define f [A] := ( f (aij)). We
now introduce the main objects of study in this paper.
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Definition 1.2. Let n ≥ 2 and let G = (V, E) be a simple graph on V = {1, . . . , n}. We define:

HG := {α ∈ R : A◦α ∈ PG for all A ∈ PG([0, ∞))},
Hψ

G := {α ∈ R : ψα[A] ∈ PG for all A ∈ PG(R)},
Hφ

G := {α ∈ R : φα[A] ∈ PG for all A ∈ PG(R)}.

Theorem 1.1 thus shows: HKn = N ∪ [n − 2, ∞). The sets Hψ
Kn

and Hφ
Kn

have also
been computed, and exhibit similar phase transitions.

Theorem 1.3 (FitzGerald–Horn [11], Bhatia–Elsner [6], Hiai [20], Guillot–Khare–Rajarat-
nam [14]). Let n ≥ 2. The H-sets of powers preserving positivity for G = Kn are:

HKn = N∪ [n− 2, ∞), Hψ
Kn

= (−1 + 2N) ∪ [n− 2, ∞), Hφ
Kn

= 2N∪ [n− 2, ∞).

(See [14] for more details.) Theorem 1.3 demonstrates that there is a threshold value
above which every power function xα, ψα, or φα preserves positivity on Pn([0, ∞)) or
Pn(R), when applied entrywise. The threshold is commonly referred to as the critical
exponent for preserving positivity. We now extend this notion to all graphs.

Definition 1.4. Given a graph G, define the (Hadamard) critical exponents of G to be

CEH(G) := min{α ∈ R : A ∈ PG([0, ∞))⇒ A◦β ∈ PG for every β ≥ α},
CEψ

H(G) := min{α ∈ R : A ∈ PG(R)⇒ ψα[A] ∈ PG for every β ≥ α},
CEφ

H(G) := min{α ∈ R : A ∈ PG(R)⇒ φα[A] ∈ PG for every β ≥ α}.

These critical exponents appear to be new graph invariants, not previously studied in
the literature. Note that since every graph G = (V, E) is contained in a complete graph,
the critical exponents of G are well defined by Theorem 1.3, and bounded above by |V| −
2. However, computing critical exponents is a challenging problem at the intersection of
graph theory, analysis, and matrix theory. Indeed, the critical exponents are not known
for many families of non-complete graphs, and provide interesting avenues of research
in combinatorial matrix analysis, which also have the potential to impact other areas.

We now state our main result. To do so, we first recall the notion of chordal graphs.
These are precisely the graphs G in which every cycle of length 4 or more has a chord.
Chordal graphs are prominent in mathematics as well as applications. They are also
known as decomposable graphs, triangulated graphs, and rigid circuit graphs; have
a rich structure, and include several well-known examples of graphs (see Table 2.1).
Chordal graphs play a fundamental role in multiple areas including the matrix com-
pletion problem [5, 13, 23], maximum likelihood estimation in the theory of Markov
random fields [21, Section 5.3], and perfect Gaussian elimination [12].

Let K(1)
n be the complete graph on n vertices with one edge missing. Then we have:
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Theorem 1.5 (Main result). Let G be any chordal graph with at least 2 vertices and let r be the
largest integer such that K(1)

r is a subgraph of G. Then

HG = N∪ [r− 2, ∞), Hψ
G = (−1 + 2N) ∪ [r− 2, ∞), Hφ

G = 2N∪ [r− 2, ∞). (1.3)

In particular, CEH(G) = CEψ
H(G) = CEφ

H(G) = r− 2.

Our main result extends the previous work in Theorem 1.3 to the important family
of chordal graphs. Moreover, it shows how the problem of finding powers preserving
positivity is solvable using combinatorial techniques.

We conclude this section with some remarks. First, the cones PG of structured matri-
ces naturally arise in applications, as (inverse) covariance/correlation matrices with an
underlying graphical model [21]. Powering such matrices entrywise is a way to regular-
ize them in high-dimensional probability and statistics. This procedure often improves
their properties (e.g. condition number) and helps separate signal from noise – see [7,
22, 24] for more details. Theorem 1.5 and related results are relevant in this context.
For instance, we show in recent works [15, 16] that the critical exponent CEH(G) of any
tree or bipartite graph G is 1. As a consequence, unlike in the unconstrained case of
Pn (i.e., Kn), families of sparse as well as dense graphs G = (V, E) can have very small
critical exponents that do not grow with V. This is important as such small powers can
regularize matrices, yet minimally modify their entries.

This work is an extended abstract of [15]. Understanding which powers preserve
positivity is part of a broad program by the authors; see [4, 2, 3, 14, 15, 16, 17, 18, 19]
and the references therein. Our work has yielded surprising connections to other areas
such as Schur polynomials and symmetric function theory; see [4, 2] for more details.

2 Proof of the main result

In this section we provide the main ideas used to prove Theorem 1.5. Complete proofs
as well as other ramifications of the results in this paper can be found in [15].

We begin by recalling some properties of chordal graphs (see e.g. [9, Chapter 5.5],
[12, Chapter 4]). Given a graph G = (V, E), and C ⊂ V, denote by GC the subgraph of
G induced by C. A clique in G is a complete induced subgraph of G. A subset C ⊂ V
separates A ⊂ V from B ⊂ V if every path from a vertex in A to a vertex in B intersects
C. A partition (A, C, B) of subsets of V is a decomposition of G if GC is a clique and C
separates A from B (see Figure 2.1). A graph G is decomposable if either G is complete, or if
there exists a decomposition (A, C, B) of G such that GA∪C and GB∪C are decomposable.
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Figure 2.1: Decomposition of a graph.

Let G be a graph and let B1, . . . , Bk be a sequence of subsets of vertices of G. Define:

Hj := B1 ∪ · · · ∪ Bj, Rj = Bj \ Hj−1, Sj = Hj−1 ∩ Bj, 1 ≤ j ≤ k, (2.1)

and H0 := ∅. The sets Hj, Rj, and Sj are respectively called the histories, residuals, and
separators of the sequence. The sequence B1, . . . , Bk is said to be a perfect ordering if:

1. For all 1 < i ≤ k, there exists 1 ≤ j < i such that Si ⊂ Bj; and

2. The sets Si induce complete graphs for all 1 ≤ i ≤ k.

Decompositions and perfect orderings provide important characterizations of chordal
graphs, as summarized in Theorem 2.1.

Theorem 2.1 ([21, Chapter 2]). Given a graph G = (V, E), the following are equivalent:

1. G is chordal (i.e., each cycle with 4 vertices or more in G has a chord).

2. G is decomposable.

3. The maximal cliques of G admit a perfect ordering.

We now provide a correspondence between decompositions of a graph G, and de-
compositions of matrices in the associated cone PG. In the statement of the result and
below, given a graph G and an induced subgraph G′, we identify PG′(I) with a subset
of PG(I) when convenient, via the assignment M 7→ M ⊕ 0(V(G)\V(G′))×(V(G)\V(G′)).

Lemma 2.2. Let G = (V, E) be a graph with a decomposition (A, C, B) of V, and let M be a
symmetric matrix. Assume the principal submatrices MAA and MBB of M are invertible. Then
the following are equivalent:

1. M ∈ PG.

2. M = M1 + M2 for some matrices M1 ∈ PGA∪C and M2 ∈ PGB∪C .
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The proof of Lemma 2.2 requires working with Schur complements. Recall that a

symmetric block matrix M =

(
A B
BT C

)
with C invertible is positive definite if and only

if C is positive definite, and the Schur complement of C in M

M/C := A− BC−1BT

is positive definite. Similarly, if A is invertible, then M is positive definite if and only if A
is positive definite and the Schur complement M/A := C− BT A−1B is positive definite.

Proof of Lemma 2.2. Clearly (2) =⇒ (1). Conversely, write M ∈ PG in block form as

M =

MAA MAC 0
MT

AC MCC MCB
0 MT

CB MBB

 .

Then M = M1 + M2, with

M1 :=

MAA MAC 0
MT

AC MT
AC M−1

AAMAC 0
0 0 0

 , M2 :=

0 0 0
0 MCC −MT

AC M−1
AAMAC MCB

0 MT
CB MBB

 .

Using properties of Schur complements, we easily verify that M1 ∈ PGA∪C , M2 ∈ PGB∪C .

Note that Lemma 2.2 also provides information about the extreme points of the con-
vex cone PG when G is decomposable. As we show below, the problem of understanding
the geometry of PG is closely related to the computation of the H sets in Definition 1.2.

Remark 2.3. When G has a decomposition (A, C, B) and M ∈ PG, then M also factors as

M =

MAA 0 0
MT

AC Id|C| MCB
0 0 MBB

M−1
AA 0 0
0 S 0
0 0 M−1

BB

MAA 0 0
MT

AC Id|C| MCB
0 0 MBB

T

, (2.2)

where Idk denotes the k× k identity matrix, and S := MCC−MT
AC M−1

AAMAC−MCBM−1
BB MT

CB.
We will make use of this factorization later.

Lemma 2.2 provides a powerful technique to verify when functions preserve positiv-
ity on PG when applied entrywise. Indeed, suppose G is a graph with a decomposition
(A, C, B). Let M ∈ PG. Write M = M1 + M2 as in Lemma 2.2, with M1 ∈ PGA∪C and
M2 ∈ PGB∪C . Given a real function f : R → R, recall that we denote by f [M] the matrix
( f (mij)). Now if f [M] − f [M1] − f [M2] is positive semidefinite, then f [M] ∈ PG if f
preserves positivity on PGA∪C and PGB∪C . Thus, we introduce the following notion.



The critical exponent: a novel graph invariant 7

Definition 2.4. Given a graph G and a function f : R→ R with f (0) = 0, we say that f [−] is
Loewner super-additive on PG(R) if f [A + B]− f [A]− f [B] ∈ PG(R) for A, B ∈ PG(R).

Note that this notion coincides with the usual notion of super-additivity on [0, ∞)
when G has only one vertex.

The above discussion shows that a function preserves positivity on PG if it preserves
positivity on PGA∪C and PGB∪C and is Loewner super-additive on PGC . Theorem 2.5
below shows that the converse also holds under certain assumptions.

Theorem 2.5. Let G = (V, E) be a graph with a decomposition (A, C, B), and let f : R→ R.

1. If f [−] preserves positivity on PGA∪C and on PGB∪C and is Loewner super-additive on PGC

then f [−] preserves positivity on PG.

2. Conversely, if f = ψα or f = φα and f [−] preserves positivity on PG, then f [−] is
Loewner super-additive on PGC′

for every clique C′ ⊂ C for which there exist vertices
v1 ∈ A, v2 ∈ B that are adjacent to every v ∈ C′ (see Figure 2.2).

Figure 2.2: Illustration of the second part of Theorem 2.5.

To prove Theorem 2.5, we recall previous work on Loewner super-additive functions.

Theorem 2.6 (Guillot, Khare, and Rajaratnam [14, Theorem 5.1]). Given an integer n ≥ 2,
the sets of entrywise powers α ∈ R, such that the functions fα(x) = xα, ψα(x), φα(x) are
Loewner super-additive maps on Pn(R) are, respectively,

N∪ [n, ∞), (−1 + 2N) ∪ [n, ∞), 2N∪ [n, ∞).

Moreover, the same results hold if Pn(R) is replaced by the set of rank one matrices in Pn(R).

Sketch of the proof of Theorem 2.5. We only prove the second part (see [15] for a complete
proof). Suppose f = ψα or φα for α ∈ R, and f [−] preserves positivity on PG. Then
clearly f [−] preserves positivity on PGA∪S and PGB∪S . Moreover, suppose there exist
v1 ∈ A, v2 ∈ B, and a clique C′ ⊂ C of size m such that v1 and v2 are adjacent to every
vertex in C′. Assume, without loss of generality, that the vertices of G are labelled in the
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following order: v1, the m vertices in C′, v2, and the remaining vertices of G. Now given
vectors u, v ∈ Rm and a m×m symmetric matrix M, define the matrix

W(u, v, M) :=

1 uT 0
u M v
0 vT 1

 . (2.3)

Then W(u, v, uuT + vvT) ⊕ 0|V|−(m+2) ∈ PG(R), so by the assumptions on f , we con-
clude that f [W(u, v, uuT + vvT)] = W( f [u], f [v], f [uuT + vvT]) ∈ Pm+2(R). Using the
factorization (2.2), we conclude that

f [uuT + vvT]− f [u] f [uT]− f [v] f [vT] = f [uuT + vvT]− f [uuT]− f [vvT] ≥ 0. (2.4)

Thus f = ψα, φα is Loewner super-additive on rank one matrices in Pm. By Theorem 2.6,
we conclude that f is Loewner super-additive on all of Pm.

We now provide a sketch of the proof of Theorem 1.5 (see [15] for full details).

Sketch of the proof of Theorem 1.5. Suppose G is a chordal graph, which we may assume to
be connected. Let r be as in the statement of the theorem. One can show that Theorem 1.3
still holds when Kn is replaced by K(1)

n . As a result,

HG ⊂N∪ [r− 2, ∞), Hψ
G ⊂ (−1 + 2N) ∪ [r− 2, ∞), Hφ

G = 2N∪ [r− 2, ∞). (2.5)

We now prove the reverse inclusions. By Theorem 2.1, the maximal cliques of G admit a
perfect ordering {C1, . . . , Ck}. We will prove the reverse inclusions in (2.5) by induction
on k. If k = 1, then G is complete and the inclusions clearly hold by Theorem 1.3.
Suppose the result holds for all chordal graphs with k = l maximal cliques, and let G be
a graph with k = l + 1 maximal cliques. For 1 ≤ j ≤ k, define

Hj := C1 ∪ · · · ∪ Cj, Cj = Cj \ Hj−1, Sj = Hj−1 ∩ Cj (2.6)

as in (2.1). By [21, Lemma 2.11], the triplet (Hk−1, Sk, Rk) is a decomposition of G. Let
α ∈ [r − 2, ∞). By the induction hypothesis, the three αth power functions preserve
positivity on PGHk−1∪Sk

= PGHk−1
. Moreover, since α ≥ r− 2, they also preserve positivity

on PGCk∪Sk
= PGCk

. We now claim that r ≥ |Sk|+ 2. Clearly, |Sk| ≤ r since Sk is complete.
If |Sk| = r, then Ck is contained in one of the previous cliques, which is a contradiction.
Suppose instead that |Sk| = r − 1. Since {C1, . . . , Ck} is a perfect ordering, Sk ⊂ Ci for
some i < k. Let v ∈ Ci \ Sk and let w ∈ Rk. As v, w are adjacent to every s ∈ Sk,
the subgraph of G induced by Sk ∪ {v, w} is isomorphic to K(1)

r+1, which contradicts the
definition of r. It follows that r ≥ |Sk| + 2, as claimed. Now by Theorem 2.6, the αth
power functions are Loewner super-additive on PSk . Applying Theorem 2.5, we conclude
that α ∈ Hψ

G,Hφ
G, and hence α ∈ HG. This concludes the proof of the theorem.
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The following corollary shows how to systematically compute the critical exponent
of a chordal graph.

Corollary 2.7. Suppose G = (V, E) is chordal, V = {v1, . . . , vm}, and denote the maximal
cliques in G by C1, . . . , Cn. Define the “maximal clique matrix” of G to be M(G) := (1(vi ∈
Cj)). Then the critical exponent of G equals the largest entry of M(G)T M(G)− 2 Id|V|, i.e.,

CEH(G) = CEψ
H(G) = CEφ

H(G) = max
i,j

(uT
i uj − 2δi,j), (2.7)

where u1, . . . , un ∈ {0, 1}m are the columns of M(G).

In particular, Corollary 2.7 can be used to compute the critical exponent of interval
graphs, which are a well-known class of chordal graphs. Note that Theorem 2.5 can be
used to compute the critical exponents of several other important graphs; see Table 2.1.

Graph G CEH(G), CEψ
H(G), CEφ

H(G)
Tree 1

Complete graph Kn n− 2
Minimal planar triangulation of Cn for n ≥ 4 2

Apollonian graph, n ≥ 3 min(3, n− 2)
Maximal outerplanar graph, n ≥ 3 min(2, n− 2)
Band graph with bandwidth d ≤ n min(d, n− 2)
Split graph with maximal clique C max(|C| − 2, max deg(V \ C))

Table 2.1: Critical exponents of important families of chordal graphs with n vertices.

3 Non-chordal graphs: results and open problems

Computing the set of powers preserving positivity on PG for general non-chordal graphs
G still remains open. In this section, we mention recent results along this direction, and
conclude by outlining several open questions.

As shown in Section 2, decompositions of graphs can be used to make reductions
when computing critical exponents of chordal graphs. For non-chordal graphs, the de-
composition process can still be iterated until components cannot be decomposed any-
more. The resulting components are called the prime components of the graphs. The
following result is akin to Theorem 2.5 for non-chordal graphs.

Theorem 3.1 ([15, Theorem 4.1]). Let G be a graph with a perfect ordering {B1, . . . , Bk} of its
prime components, and let f : R→ R be such that f (0) = 0. Define s := maxi=1,...,k |Si|, where
Si is defined as in (2.1). If f [−] preserves positivity on PBi for all 1 ≤ i ≤ k and is Loewner
super-additive on PKs , then f [−] preserves positivity on PG.



10 Dominique Guillot, Apoorva Khare and Bala Rajaratnam

3.1 Cycles and bipartite graphs

Chordal graphs are graphs without induced cycles of length 4 or more. A next natural
step is thus to examine the case of cycles. In recent work [15], we show:

Theorem 3.2 ([15, Proposition 4.3]). For all n ≥ 3,HCn = Hψ
Cn

= [1, ∞), and Hφ
C4

= [2, ∞).

Moreover, for n > 4, [2, ∞) ⊂ Hφ
Cn
⊂ [1, ∞), with 1 /∈ Hφ

Cn
for n even.

Note that Theorem 3.2 is in line with Theorem 1.5 as r = 3 is the biggest integer such
that K(1)

r is contained in Cn.
Another very common family of non-chordal graphs is the bipartite graphs.

Theorem 3.3. Suppose G is a connected bipartite graph with at least 3 vertices. Then,

HG = [1, ∞), [2, ∞) ⊂ Hφ
G ⊂ [1, ∞), {1} ∪ [3, ∞) ⊂ Hψ

G ⊂ [1, ∞).

If moreover K2,2 ⊂ G ⊂ K2,m for some m ≥ 2, then

Hφ
G = [2, ∞), {1} ∪ [2, ∞) ⊂ Hψ

G ⊂ [1, ∞).

Akin to Theorem 3.2, note that Theorem 3.3 is also in agreement with Theorem 1.5.
Moreover, Theorem 3.3 has a surprising conclusion: broad families of dense graphs
such as complete bipartite graphs can have small critical exponents that do not grow
with the number of vertices. This has important applications in high-dimensional statis-
tics: for appropriate structures of zeros, small powers can be used to minimally modify
the entries of covariance matrices to improve their properties (see Introduction), while
maintaining positivity. Note also that the result is in sharp contrast to the general case
(Theorem 1.1), where there is no underlying structure of zeros.

3.2 Concluding remarks and open problems

The critical exponent of several other graphs (including coalescences of graphs and
graphs obtained by pasting cycles to other graphs) were computed in [15]. However, the
critical exponent is unknown for general graphs; it appears that new ideas in algebra,
combinatorics, and convex geometry will be required to solve the question completely.
We conclude this short paper by formulating some open problems that we hope will
stimulate research at the intersection of these three areas.
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Open problems:

1) Every graph G for which CEH(G) is currently known satisfies CEH(G) = r − 2
where r is the largest integer such that G contains K(1)

r as a subgraph. Does this
equality in fact hold for every graph?

2) It appears that the critical exponent of a graph is always an integer. Can this be
proved directly without explicitly computing critical exponents?

3) If G′ is obtained from G by adding a new vertex to G, and connecting it to every
vertex of G, is it true that CEH(G′) ≤ CEH(G) + 1?
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